Dynamic competition of DsrA and rpoS fragments for the proximal binding site of Hfq as a means for efficient annealing
نویسندگان
چکیده
Hfq is a key regulator involved in multiple aspects of stress tolerance and virulence of bacteria. There has been an intriguing question as to how this RNA chaperone achieves two completely opposite functions--annealing and unwinding--for different RNA substrates. To address this question, we studied the Hfq-mediated interaction of fragments of a non-coding RNA, DsrA, with its mRNA target rpoS by using single-molecule fluorescence techniques. These experiments permitted us to observe the mechanistic steps of Hfq-mediated RNA annealing/unwinding at the single-molecule level, for the first time. Our real-time observations reveal that, even if the ring-shaped Hfq displays multiple binding sites for its interaction with RNA, the regulatory RNA and the mRNA compete for the same binding site. The competition makes the RNA-Hfq interaction dynamic and, surprisingly, increases the overall annealing efficiency by properly aligning the two RNAs. We furthermore reveal that when Hfq specifically binds to only one of the two RNAs, the unwinding process dominates over the annealing process, thus shedding a new light on the substrate selectivity for annealing or unwinding. Finally, our results demonstrate for the first time that a single Hfq hexamer is sufficient to facilitate sRNA-mRNA annealing.
منابع مشابه
Hfq-bridged ternary complex is important for translation activation of rpoS by DsrA
The rpoS mRNA, which encodes the master regulator σ(S) of general stress response, requires Hfq-facilitated base pairing with DsrA small RNA for efficient translation at low temperatures. It has recently been proposed that one mechanism underlying Hfq action is to bridge a transient ternary complex by simultaneously binding to rpoS and DsrA. However, no structural evidence of Hfq simultaneously...
متن کاملTranslational activation of rpoS mRNA by the non-coding RNA DsrA and Hfq does not require ribosome binding
At low temperature, translational activation of rpoS mRNA, encoding the stationary phase sigma-factor, sigma(S), involves the small regulatory RNA (sRNA) DsrA and the RNA chaperone Hfq. The Hfq-mediated DsrA-rpoS interaction relieves an intramolecular secondary structure that impedes ribosome access to the rpoS ribosome binding site. In addition, DsrA/rpoS duplex formation creates an RNase III ...
متن کاملEffect of salt and RNA structure on annealing and strand displacement by Hfq
The Sm-like protein Hfq promotes the association of small antisense RNAs (sRNAs) with their mRNA targets, but the mechanism of Hfq's RNA chaperone activity is unknown. To investigate RNA annealing and strand displacement by Hfq, we used oligonucleotides that mimic functional sequences within DsrA sRNA and the complementary rpoS mRNA. Hfq accelerated at least 100-fold the annealing of a fluoresc...
متن کاملSpectroscopic observation of RNA chaperone activities of Hfq in post-transcriptional regulation by a small non-coding RNA
Hfq protein is vital for the function of many non-coding small (s)RNAs in bacteria but the mechanism by which Hfq facilitates the function of sRNA is still debated. We developed a fluorescence resonance energy transfer assay to probe how Hfq modulates the interaction between a sRNA, DsrA, and its regulatory target mRNA, rpoS. The relevant RNA fragments were labelled so that changes in intra- an...
متن کاملHfq proximity and orientation controls RNA annealing
Regulation of bacterial gene networks by small non-coding RNAs (sRNAs) requires base pairing with messenger RNA (mRNA) targets, which is facilitated by Hfq protein. Hfq is recruited to sRNAs and mRNAs through U-rich- and A-rich-binding sites, respectively, but their distance from the sRNA-mRNA complementary region varies widely among different genes. To determine whether distance and binding or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 39 شماره
صفحات -
تاریخ انتشار 2011